
ä»åã®ããŒãã¯ïŒ
ðŠ = ð(𥠖 ð)² + ð
ãã®åŒãããšã«ãã°ã©ããæžãæ¹æ³ãåŠãã§ãããŸãã
ããããããïŒ
åã åã¯ãðãã«ã€ããŠåŠã³ãŸããããã
ãâ¶ ð 㯠ðŠè»žæ¹åã«ã°ã©ããåããæ°åã§ããã
ååã¯ãðãã«ã€ããŠåŠã³ãŸããã
ãâ¶ ð 㯠ð¥è»žæ¹åã«ã°ã©ããåããæ°åã§ããã
ä»åã®ãã€ã³ãïŒãðããšãðããããã£ãŠããåŒïŒ
ä»åã®åŒã¯ããðããšãðãã®äž¡æ¹ãå ¥ã£ãŠãã圢ã§ãã
ã€ãŸããã°ã©ãã®é ç¹ïŒã°ã©ãã®äžçªé«ãã»äœãç¹ïŒãåŒãèŠãã ãã§åããããã«ãªã£ãŠããŸãã
ãã€ã³ãïŒ
ðŠ = ð(𥠖 ð)² + ð
ãã®åœ¢ãªããé ç¹ã¯ïŒ(ð¥,ðŠ)ã=ã(ð,ð)
ã§ã¯ãäŸé¡ãèŠãŠã¿ãŸãããïŒ

ðŠ = (𥠖 2)² + 1
äžèšã«åŸã£ãŠã°ã©ããæžããŠã¿ãŸãããã
ã¹ãããâ ïŒåŒããé ç¹ãèªã¿åã
ãðãã¯ã2ãïŒç¬Šå·ãéã«èŠãŸãïŒïŒ
ãðãã¯ã1ã
ã ãããé ç¹ã¯ïŒ(2,1)ã«ãªããŸãã
ã¹ãããâ¡ïŒã°ã©ãã®ã軞ããæžã

2æ¬¡é¢æ°ã¯å·Šå³å¯Ÿç§°ãªã®ã§ã
ã°ã©ãã®äžå¿ãšãªãã軞ããå ã«åŒããŸãã
軞ã¯ãð¥ = 2

ã¹ãããâ¢ïŒé ç¹ã®ç¹ããšã
åŒããããã£ãé ç¹ (2,1) ã«ç¹ãæã¡ãŸãããã
ãããæŸç©ç·ã®ããŠã£ãºãããŸãã¯ãè°·ãã§ãã

ã¹ãããâ£ïŒãð¥ãã«ã0ããä»£å ¥ããŠãããäžã€ç¹ãåºã
ðŠ = (0 – 2)² + 1
ðŠ = 4 + 1
ðŠ = 5
ã ãããç¹ (0,5)ããšããŸãã

ã¹ãããâ€ïŒå·Šå³å¯Ÿç§°ã®ç¹ããšã
軞ïŒð¥ = 2ïŒãã¯ããã§ãããçæ¹ã«ãåãé«ãã®ç¹ãã§ããŸãã
(0, 5) ã®å¯Ÿç§°ãªç¹ã¯ â (4,5)

ã¹ãããâ¥ïŒæŸç©ç·ããªãããã«ã€ãªã
é ç¹ (2, 1)
å·Šã®ç¹ (0, 5)
å³ã®ç¹ (4, 5)
ãã®3ã€ããªãããã«æ²ç·ã§ã€ãªãã°ã宿ã§ãïŒ

仿¥ã®ãŸãšã
â
ãðããšãðãã®æ°åãããã®ãŸãŸã°ã©ãã®é ç¹ã«ãªãïŒ
â
é ç¹ïŒ(ð,ð)
â
ð¥ã«å€ã代å
¥ããŠç¹ãåããå·Šå³å¯Ÿç§°ãªç¹ã䜿ã£ãŠæŸç©ç·ãæã
ãã®åœ¢ã®2æ¬¡é¢æ°ã¯ãçè·å ¥è©Šã§ããåºãŸãïŒ
â çè·åéšã®å¿ é äºæ¬¡é¢æ°ãå®ç§ã«çè§£ã§ãã解説é â
- Q1.2æ¬¡é¢æ°ãšã¯
- Q2.ã°ã©ãã®èŠåãæ¹ã®ã³ã
- Q3.ã°ã©ããæžãæ¹
- Q4.å®çŸ©åã»å€åïŒ1ïŒ
- Q5.å®çŸ©åã»å€åïŒ2ïŒ
- Q6.颿°ð(ð¥)ãšã¯ïŒ
- Q7.äžã«åžãšäžã«åžã®èŠåãæ¹ã
- Q8.ðŠ = ðð¥Â² + ð ã®ãðãã£ãŠäœïŒ
- Q9.ðŠ = ð(ð¥ - ð)² ã®ãðãã£ãŠäœïŒ
- Q10.ðŠ = ð(ð¥ - ð)² + ð :ãð , ðãã¯æŸç©ç·ã®é ç¹ã
- Q11.å¹³æ¹å®æã£ãŠäœïŒ
- Q12.å¹³æ¹å®æã®å¿çšç·š
- Q13.æŸç©ç·ã®å¹³è¡ç§»åâ
- Q14.æŸç©ç·ã®å¹³è¡ç§»åâ¡
- Q15.象éã£ãŠäœïŒ
- Q16.æå€§å€ã»æå°å€ã£ãŠäœïŒ
- Q17.æå€§å€ãšæå°å€ã®ç¯å²ãèŠæ¥µããâ <
- Q18.æå€§å€ãšæå°å€ã®ç¯å²ãèŠæ¥µããâ¡
- Q19.è»žã«æåãå«ãå Žåã®æå€§å€ãšæå°å€â
- Q20.è»žã«æåãå«ãå Žåã®æå€§å€ãšæå°å€â¡
- Q21.è»žã«æåãå«ãå Žåã®æå€§å€ãšæå°å€â¢
- Q22.å ±æç¹ã®æ±ãæ¹
- Q23.å€å¥åŒã䜿ãããªããã
- Q24.æŸç©ç·ãšïœè»žããç°ãªãïŒç¹ã§äº€ãããåé¡ã




























